Additions and Corrections

The Structure of Trichloromethyltitanium: A Redetermination of the Relative Sign of ${}^{2}J(H-D)$ in (CH₂D)TiCl₃

Malcolm L. H. Green and Andrew K. Hughes

Inorganic Chemistry Laboratory, South Parks Road, Oxford OX1 3QR, UK

The relative sign of the ${}^{2}J(H-D)$ coupling constant in (CH₂D)TiCl₃ has been redetermined and found to be negative.

The structure and geometry of the formally 8 valence electron complex MeTiCl₃ has been an area of intensive scientific study. The molecular structure determined by gas electron diffraction was shown to display a flattened CH₃ fragment with \angle TiCH = 101.0(2.2)°;¹ this was interpreted in terms of partial donation of the C–H bonding electrons into vacant orbitals on Ti. The magnitude of the H–H coupling constant, as determined from the CH₂D isotopomer, was found to be 11.3 Hz and the relative sign determined to be positive. This represented the only formally sp³ H–C–H group with a positive coupling constant; calculations suggested that the flattening of the methyl group might account for this coupling constant.^{1,2}

Subsequent work by Williamson and Hall using SCFMO and GVB calculations has predicted an undistorted CH₃ group with \angle TiCH = 107 ± 1°.³ These calculations also accounted for the observed low CH₃ rocking mode in the gas-phase IR spectrum. In contrast, other calculations using LCGTO-X α methods have predicted a flattened geometry.⁴ The factors determining the distortion of the methyl group have also been discussed by other workers.⁵

A redetermination of the gas-phase structure of $(CH_3)TiCl_3$ and $(CD_3)TiCl_3$ resulted in two independent structural determinations.⁶ These show $\angle TiCH = 109.0(1.7)^\circ$ and $\angle TiCD =$ $108.4(2.5)^\circ$ and show no deviation from normal methyl group geometry. These structural determinations used an all-glass inlet system to avoid decomposition of the complex, and this resulted in an improvement of the quality of the data, as shown by the better agreement factors (R).⁶

The observation of a positive ${}^{2}J(H-D)$ for $(CH_2D)TiCl_3$, and the interpretation of this in terms of a flattening of the CH₃ group, thus appears to contradict this second gas-phase structural determination and the numerous calculations performed on this molecule. Thus we decided to redetermine the relative sign of ${}^{2}J(H-D)$, using both the spin-tickling technique and an alternative method. The complex (CH₂D)TiCl₃ was prepared by the reaction between Ti(η -C₅H₅)₂-(CH₂D)₂ and TiCl₄ in CD₂Cl₂ followed by distillation of the product into a 5 mm NMR tube.⁷

Fig. 1 The high-resolution inverse-mode proton-detected ${}^{1}H_{-13}C$ heteronuclear shift correlation spectrum of (CH₂D)TiCl₃ recorded at 253 K in CD₂Cl₂, showing the ${}^{1}H$ and ${}^{13}C$ projections

Fig. 2 Determination of the sign of ${}^{2}J({}^{1}H-{}^{2}D)$ for (CH₂D)TiCl₃ in CD_2Cl_2 solution at 253 K. (a) The 75.43 MHz ¹³C NMR spectrum. (b)-(d) The effect on the ¹³C satellites in the ¹H NMR during irradiation of the ¹³C spectrum at the lines indicated.

The high-resolution inverse-mode proton-detected ¹H-¹³C heteronuclear shift correlation spectrum8 of (CH2D)TiCl3 at 253 K is shown in Fig. 1 together with the ¹H and ¹³C projections. The spectrum was recorded in this fashion in order to reduce experiment time for the thermally sensitive complex by utilising the enhanced sensitivity of the protondetected experiment. In the ¹H projection, the small peak to low field of the triplet is due to the (CH₃)TiCl₃ isotopomer. The cross peaks provide a means of determining the relative signs of the ${}^{2}J(H-D)$ and ${}^{1}J(C-D)$ coupling constants. Thus, the high field ¹H line correlates with the low field ¹³C line and it follows that ${}^{2}J(H-D)$ and ${}^{1}J(C-D)$ are opposite in sign;⁹ since ${}^{1}J(C-H)$ is taken to be positive, this gives a negative sign for ${}^{2}J(H-D)$ in $(CH_{2}D)TiCl_{3}$. This result is the opposite to that reported in ref. 1.

Fig. 2a shows the 75.43 MHz ¹³C NMR spectrum of (CH₂D)TiCl₃ at 253 K in CD₂Cl₂ together with the labelling used for the lines. The spectra in Fig. 2c and 2b show the effect on the ¹³C satellites of the CH_2D ¹H resonance (Fig. 2d) as a result of low-power irradiation of the lines labelled 4 and 6 (spin-tickling). These spectra show the reduction in intensity of some lines as a consequence of the spin-tickling; however, in these results the sets of lines that are affected indicate that the relative sign is opposite to that previously reported.¹ We feel that the most likely cause of this error was the incorrect transcription of the irradiation frequencies used in obtaining the spectra in the original experiments. The determination of the relative signs from the 2-dimensional experiment does not require written records to be made of the decoupling frequences used, and is thus not subject to transcription errors.

Received, 9th April 1991; Com. 1/01646F

References

- 1 A. Berry, Z. Dawoodi, A. E. Derome, J. M. Dickinson, A. J. Downs, J. C. Green, M. L. H. Green, P. M. Hare, M. P. Payne, D. W. Rankin and H. E. Robertson, J. Chem. Soc., Chem. Commun., 1986, 520.
- 2 J. C. Green and M. P. Payne, Magn. Reson. Chem., 1987, 25, 544.
- R. L. Wiliamson and M. B. Hall, J. Am. Chem. Soc., 1988, 110, 3 4428.
- 4 P. Knappe and N. Rösch, J. Organomet. Chem., 1989, 359, C5.
- 5 O. Eisenstein and Y. Jean, J. Am. Chem. Soc., 1985, 107, 1177.
- P. Briant, J. Green, A. Haaland, H. Møllendal, K. Rypdal and J. Tremmel, J. Am. Chem. Soc., 1988, 111, 3434.
- 7 C. Beermann and H. Bestian, Angew. Chem., 1959, 71, 618.
 8 A. Bax and S. Subramanian, J. Magn. Reson., 1986, 67, 565.
- 9 For other examples of the use of the 2-dimensional method to determine the relative signs of coupling constants see: R. Benn, H. Brenneke, J. Heck and A. Rufiñska, Inorg. Chem., 1987, 26, 2826; R. Benn, H. Brenneke, E. Joussen, H. Lehmkuhl and F. Lõpez Ortiz, Organometallics, 1990, 9, 756.